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Abstract. A compact solution of a special biconfluent Heun equation is obtained by means 
of a Laplace transform. The eigenvalues and eigenfundions of two new types of ScMjdinger 
equation are deduced by appropriate variable transformations. The associated Dotential function 
in each case CM be arranged to have a double well 

This study is motivated by obtaining a hitherto un-noticed compact solution of a non-hivial 
special case of the second-order linear differential equation 

xy” f (alx’ + brx f C I ) ~ ’  + (@xz +box + co)y = 0 (1) 

from which the solutions of two new types of Schrodinger equation can be deduced. 
In (I), put y = Y’, and obtain 

x Y ” ‘ + ( a ~ x ~ + b ~ x + c ~ ) Y ” + ( a o x ~ + b ~ x + c o ) Y ‘ = O .  (2) 

Y = exp(xt) u ( t )  dt (3) 

Take the Laplace transform 

where the modulating function ~ ( t )  is determined by the differential equation 

t(uit +@)U” - [t3 + bit’ + (bo - 4ai)t - 2 ~ 0 1 ~ ’  
+[(CI - 3)t’ + (CO - 2b1)t - 2 ~ 1  - bo]u = 0. (4) 

If any non-hivial solution of (4) can be obtained, then the solution of (2), and, in turn, (l), 
follows from (3), with a suitable choice of the contour of integration C: In general, (4) is 
probably as difficult to solve as (I), but if we put 

c1 = 3  - c0=2b1 and bo =ZQI (5) 

t (Q] t  +@)U’ = It3 + bitZ -2Ulf -2UolU (6) 

(7) 

(4) reduces to the first-order equation 

~~ 

where U = U’. Hence, 

U = eXp[it2/al + (b l /a l  - uo/a:)t]t-2(f + uo/a,)a+~-bla/a~. 

The contour of integration in (3) may be taken to be a simple loop beginning and ending at 
-CO if Re(x) > 0, or at CO if Re(x) < 0, and encircling the ongin once. This approach has 
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been suggested by Murphy (1960) pp 141 and 214, from a strictly practical point of view. 
The reader should also consult Ince (1926), ch 8 and 18. 

The modulating function u(t) is obtained from (7) by indefinite integration with respect 
to t ,  and in the present context, the most convenient form of carrying out this process is by 
replacing t by s - &/q, when, apart from arbitrary constants, 

u(s) = l exp(fs2/al +sbl/al)(s - ~ / u ~ ) ~ 2 s u ~ ~ ~ ~ ~ b 1 u ~ 1 u z  ' ds. (8) 

If the integrand is expanded as a triple series, term-by-term integration within its domain 
of convergence gives 

where the indices of summation in this study run over all the non-negative integers. As 
usual, the Pochhammer symbol (a. m)  denotes the product a(a f l)(a+2). . . (a+m - 1) = 
r (a  + m)/ r(a);  (U, 0) = 1. From (3), 

Y ( x )  = exp(-@x/al) exp(xs) u(s) ds (10) s, 
where we recall that t = s -&/al,  so that the right-hand member of (10) becomes, formally, 

exp(xs) sl+'~~u~-bls~u~+zm+m+P ds = exp(-aox/al)F(x), say. (1 1) 

When evaluated, the inner integral of (1 1) is found to be proportional to 
.-2-~~/a:+b,.o/u:-un-n - p  / i Y - l - ~ / a ~ + b l a o / a l  2 - 2 m - n - p )  "' ''_ (12) 

(13) 
a polynomial form of F(x) follows. Apart from any constant factors, the corresponding 
solution of (2) with the conditions (5) is 

where terms with negative exponents vanish, so that if 

1 +a:/.: - blao/a: = -N N = 0 , 1 , 2 ,  .. . 

x ( - N ,  2m + n  + P ) X " - ~ - " - ~ .  (14) 

As a simple consequence of the binomial theorem, the previous result may be expressed as 
the following double series: 

which may be regarded as a combination of the Hermite polynomial and a special case 
of the Charlier polynomial. In this case, when (13) holds, the previous formal process is 
justified. 

We now consider (1) with conditions (5): 

xy" + ( q x 2  + b l x  + 3)y' + (ao~' + 2 n i ~  +2bi)y = 0 (16) 

(17) 

from which we obtain its normal form 

W"+ [-'a2x2 + (a0 - - ,~ lb l )x  1 - tb: + 4blx-I - ~ x - ~ I W  = 0 4 1  



The exact solution of hyo new types of Schrodinger equation 6741 

by replacing the dependent variable of (16) by 

exp(-alx2 - fblx)x-’/’W. (18) 
If x = ZY and after replacing W by 

1 
z z ( 9 - l ) ,  (19) 

it follows that 
,“ + [ q 2 [ - ~ a ~ z % - 2  + (ao - &,bI)z39-2 - ib2z%-2 + i b 1 ~ 9 - 2 ]  

(20) 

The parameters a1 and a0 can be so arranged that a: and a0 -,falbl are completely free. 
Hence, independent eigenvalues are associated with the coefficients of z*-’ and zN-’, and 
on putting q = 

2 4 1  2 
+($ - q2)z-Z)w = 0. 

1 2 or q = $, we have, respectively 
I 

(21) 

(22) 

-- w” + 4 1[-V 4 1  + (a0 - f a l b l ) z  2 - $b:z-‘ + ‘ b ~ z - ~ ’ ~ ] ,  2 = 0 

with eigenvalue q, and 

w“ + (4/9[-$~:z~/~ + a0 - falbl - ib7z-2/3 + i b  IZ -4/31 , - 7 z - ’ / 36 )w = O  
with eigenvalue ao. 

The eigenvalue equation in each case is given by (13), namely 

1 +ai/a:  - blao/a: = - N  N = 0,1,2, .  . . . (23) 
Equation (14) furnishes the eigenfunctions, noting that y = Y’, making the appropriate 
changes of variable outlined above. Both (21) and (22) could conceivably be useful, in that 
each of the associated potential functions could be made to include a double well on the 
half line, with a singularity of fractional order. It might also be noted that the form of (1) 
considered in this study is a new type of biconfluent Heun equation for which a compact 
solution has been deduced. See Exton (1991) and Ronveaux (1995) for example. 
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